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Abstract
In this paper, we have considered basic Legendre polynomials obtained from Rodrigue’s formula and observed the
findings if we use fuzzy intervals citing the particular case of increasing order of the arguments and using triangular
fuzzy number in the polynomials taken into consideration. Fuzzy membership functions are found out by adoption
of different methods.
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I.  INTRODUCTION

Legendre differential equations are included into the category of linear differential equations of second order with
variable coefficients. In solving these equations, explicit solutions cannot be found. That is, solutions is in terms of
elementary functions cannot be found. In many cases it is easier to find a numerical or series solution. This
particular Differential Equation has got importance in applied mathematics, particularly in boundary value problems
involving spherical configurations. Though n is a real number, only integral value of n is required in most physical
applications. It is to be referred that the concept of Fuzzy differential equation was first introduced by Chang and
Zadeh [1]. Dubois and Prade [2] has given the extension principle.

1. BASIC CONCEPTS AND DEFINITIONS

A triangular Fuzzy number p is defined by three real numbers with base as the interval [a,c] and b as the vertex of
the triangle. The membership functions are defined as follows:

l))(_a; wherea<x<b
-8 AL(@)=)a+a(b-a)
,u(x)(z) E)(—_C; whereb<x<c | Where a-cuts are given by and Ag(a)=)c+a(b-c)
—-C
0 ; otherwise

I11. LEGENDRE POLYNOMIALS IN TERMS OF RODRIGUE’S FORMULA

Also as per Rodrigue formula, Legendre polynomial is

1 d°
P,(x) =
() 2".nldx"

(x* =" 1)
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. 1 d 1
Putting n=1, P(X)=——(x*-1)==.2x=X
g (%) 2L dx( ) 2
1 d? 1 d?
n=2, P(X)=————(xX*-1)*==—(x* +1-2x?
2(%) 22.21 dxz( ) 8dx2( )
1.,.2 1.,
=—(12x"-4)=—-(3x" -1
5 (12¢* —4) =7 (3" 1)
n=3, P(X)= ——(x"-1)° ==(5x"-3x
(9 = g3 (O =1 = (6% ~3%)

IV. FUZZIFICATION OF LEGENDRE POLYNOMIAL P,(X)

Let us Fuzzify the Legendre polynomial P, (X) where P, (x) = %(3X2 -1) ®)
X=X,
X S XX,
Xo =%
. . — X+ X,
Let X(=)[X,, X,, X;] such that membership function x(Xx)(=) P Xy SX< X,
X3 X2
0 ; otherwise

Hence a-cut for x is [X](“)(:)[X1+(X2 — X))o, X3 — (X, —Xz)a], Now a-cut for Py(x) is

P01 ()5 X% —1}<=)%{3[X1 + 06 =)t %= (- xz)a]o}

[X + (X, = X)a, X3 — (X —X,)a] -1
(5 B + (5 = x)a¥ 01 06 - )1}
il X"+ 2406 =)o+, -x)’a’ - 1,

21 1% 2%, 06 = x)a + (6 —x,) e’ - 1

P, (x) (:)%[B[XP Xy, %, ]()[ %, X,, X,]—1] assuming 0< x, < x, < X,
Also (=) % [3[ X%, X ] —1]

=) E (3x12 —1), %(3x22 —1), %(3)<32 —1)}
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3 3
S (% —x) @’ +3% (% - x)a +- (4" - K) (9 X,
2 2
Where 3 3
and E(Xs_xz)zaz _3X3(X3_X2)a+E(X32_ 3)(=) X,
Now we are to retain two roots a €[0,]] suchthat
3 3 1 2
_3X1(X2 - Xl)i \/9)(12 (Xz - X1)2 o 4-E(X2 o Xl)Z-E(Xlz _5 _§ Xl)
a (=)
3(X2 - X1)2
3 3 1 2
33 (% —Xz)i\/9X32(x3 —X)? =4 (X5 — Xz)z-*(xa2 ———-X,)
_ 2 2 3 3
and «a(=) 5
3(X3 - Xz)
Hence f.m.ffor P,(X) is
2 2 27,2 1 2
_Xl(XZ _X1)+ Xy (Xz _X1) _(Xz _Xl) (X1 _g_gx)
(Xz - X1)2 ’
1 2 1 2
where 5(3)(1 -)<X< E(Sx2 -1)
2 2 2py2 1 2
X3(X3 _Xz)_ Xq (Xs _Xz) _(Xs _Xz) (Xs _g_gx)
:u % (X (X) = !
200 (Xs - Xz)z
1 2 1 2
where E(3x2 -1)<X< E(3x3 -1)
0, otherwise
V. FUZZIFICATION OF LEGENDRE POLYNOMIAL P3(X)
Next, let us Fuzzify the Legendre polynomial PS(X) where
1 d’ 2 s_ 1 .3
P,(x) = e X°=1)° = E(SX —3x) ®3)

Now a-cut for P3(x) is
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e 1 1150 + (X, = %) P %, — (X, = X, )a ¥
[Ps(x)]( )(Z)—[5X(.)X(.)X—3X](:)—{ [{ (G —X) } {% — (% = X;)ar} ]}
2 2| - 3[{)(1 +(X, — Xl)a}’{x3 —(X; = Xz)a’}]

; x> +3x ka +3xka’ +kal, x’ —3x k,a
+3x.k, a2 —k, o’
s {_ 3{X3 (X - Xz)a}'_3{xl +(X, - Xl)a}}
1[5%° = 3x, + (15x,K, + 3K,)a +15x,k *a? + 5k ‘a®,
2| 5%, — 3%, — (15%,°K, + 3K,)&r +15x.K, e — 5k, e’

where X, —X,=k, n=12

1
()3

@ [F(x'), F(x")] (say)

Now putting the values o ¢ [0, 1] and hence respective values of F(X/) and F(X") are shown in Table 1.

Table 1
a F(X" FX 7
1 1
0 E(5X13 —3x3) =1, (say) §(5x33 —3xl) =m, (say)
25 (5%,° —3x;) + %(15x12k1 +3k,) . (5%;° —3%,) — %(15x32k2 +3k,)
2] 15 ., 5 4 2] 15,2 5,3
—X,k, " +—k —X5k,” ——k
T1e Mt T "6 Tt
=1, (say) =m, (say)
5 (5%,° —3x;) + %(15x12k1 +3k,) . (5%;° —3%,) — %(15x32k2 +3k,)
2| 15 5 2| 15 5
+lek12 +§k13 +Zx3k22 —§k23
=1, (say) =m; (say)
7| (5%,° —3x;) + %(15x12k1 +3k,) . (5%;° —3%,) — %(15x32k2 +3k,)
2 @Xlkl2 _,_@kle' 2 +@x3k22 _@k;
16 64 16 64
=1, (say) =m, (say)
L | 1]6x =3x) + (157K, +3k,) 1] (5%, =3%) — (15%°k, +3ky)
2 | +15x.k, > +5k,* 2 | +15x;k,” — 5k,
=15 (say) = m; (say)
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Using Lagrange’s interpolation formula
F(X')@) (X)X =) (x=1)x=1) =~ (x=l)x=l)x=1)(x-15)
(I~ 1)~ 1), 1) — 1) (I S0, 1), 1), 1) 2
L = =B)x=L)(x=15) - (Xl =)= l)(x~1s)
(I S0 1) 10 —15) T 1)~ L) 1) 1)
(X—I Yx=L)(x=1)(x-1,) o
(I —1)(s = 15)(Is = 13)(1s - 1,)

And
F (X //)(:) (X — mz)(x — ms)(x — m4)(X — ms)
(ml - mZ)(ml - mS)(ml - m4)(m1 - ms)
+ (x—ml)(x—ms)(x—m4)(x—m5) a
(mz - m1)(m2 - ma)(mz - m4)(m2 - ms) ’
(x =m,)(x —m,)(x —m,)(x - ms)
(ma - ml)(ms - mz)(ma - m4)(m3 - ms)
(x = m,)(x —m, )(x —m;)(Xx — m;)
(m4 - ml)(m4 - mz)(m4 - mg)(m4 - ms)
(x = m,)(x —m,)(x —my)(x —m,)
(ms o ml)(mS - mz)(ms o m3)(m5 o m4) ’
Hence fuzzy membership function for Ps(x) is
F(X'); where I, <x<I,
Moo (=R F(XT) 5 where mg <x<m,
0 ; Otherwise

4

VI. CONCLUSION

Here we have discussed the fuzzy solution of Legendre polynomials P2(x) and P3(x). Fuzzy membership functions
of these functions are obtained which will submit the fuzziness of respective functions in specified intervals.
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